14 research outputs found

    Device-independent certification of quantum resources

    Get PDF
    Premi extraordinari doctorat UPC curs 2017-2018. 脌mbit de Ci猫nciesThe last two decades have been a very fruitful period for the fundamental research related to quantum information theory. Today we have a fairly good understanding of how intrinsically quantum properties affect various computational and cryptographic tasks. Practical implementations are advancing as well. Devices performing quantum key distribution or quantum random number generation are already commercially available. As time goes more resources are being invested in building a device which would demonstrate and exploit quantum computational supremacy. In the context of the impending second quantum revolution it is of crucial importance to build new certification tools, improve the existing ones and understand their limits. When assessing the non-classicality of a given device it is essential to estimate which assumptions about the device are not jeopardizing the certification procedure. Device-independent scenario does not make any assumptions about the inner functioning of devices, but usually only assumes the correctness of quantum theory. It gained a lot of attention because it manages to certify the quantum character of certain devices while giving to potential adversaries all power allowed by the laws of physics. Device-independent certification of various quantum resources is the main subject of the thesis.In the first part of the thesis we focus on self-testing, one of the simplest device-independent protocols. It aims to recover quantum states solely from the observed measurement correlations. It has a fundamental importance for the device-independent paradigm because it shows which quantum states can leave a device-independent 'imprint'. Practically, it bears a significance as a possible first step in more complex protocols such as blind quantum computing, randomness generation or quantum key distribution. In this thesis we present several new self-testing results. Firstly, we provide a proof that chained Bell inequalities can be used to robustly self-test maximally entangled pair of qubits and an arbitrary number of real measurements. As a side result we also present a protocol for randomness generation based on the maximal violation of a chained Bell inequality. Secondly, we provide new self-testing protocols for several classes of multipartite quantum states: Dicke states, graph states and all states of arbitrary finite dimension admitting the Schmidt decomposition. Finally, we extend self-testing to the semi-device-independent scenario and explore its properties.In the second part we move to the certification of several quantum resources and protocols. While the device-independent scenario offers the utmost security, it has a few undesirable properties. Firstly, it is very difficult to implement. In some cases, depending on the scenario, stronger assumptions about the functioning of the devices can be made. Secondly, the scenario relies on the observation of nonlocal measurement correlations, which makes some classes of entangled states useless for device-independent protocols. We address the first difficulty by presenting quantification of entanglement and randomness in quantum networks in the measurement-device-independent scenario, in which parties are assumed to have characterized preparation devices. In this scenario all entangled states can be detected. To address the second issue, we merge measurement-device-independent entanglement detection with self-testing and present the first protocol for a completely device-independent detection of all entangled states. The protocol involves placing an entangled state to be detected in a quantum network. Finally, we identify quantum state teleportation as a representative of one-sided measurement-device-independent protocols, which helps us to propose a new benchmark for certifying the non-classicality of teleportation. By using this new benchmark we show that all entangled states can lead to a teleportation protocol that cannot be simulated classicallyLes dues darreres d猫cades han significat un per铆ode molt fruct铆fer per a la investigaci贸 b脿sica en relaci贸 a la teoria qu脿ntica de la informaci贸. Avui en dia tenim un grau de comprensi贸 raonable sobre l'efecte que les propietats qu脿ntiques tenen sobre diverses tasques computacionals i criptogr脿fiques. Paral路lelament, tamb茅 es produeixen aven莽os en les implementacions pr脿ctiques: Varis dispositius que realitzen distribuci贸 qu脿ntica de claus o generaci贸 qu脿ntica de nombres aleatoris s贸n ja una realitat i estan disponibles comercialment. Mentrestant, m茅s recursos s'estan invertint en construir un dispositiu que pugui provar i explotar l'anomenada superioritat qu脿ntica. En el context d'aquesta imminent segona revoluci贸 qu脿ntica, la import脿ncia de construir noves eines de certificaci贸 i millorar les existents 茅s crucial. En el proc茅s d'avaluar la no-classicalitat d'un dispositiu donat, 茅s essencial poder estimar quines hip貌tesis no comprometen el proc茅s de certificaci贸. L'escenari independent del dispositiu no fa cap hip貌tesi sobre el funcionament intern dels dispositius, tan sols pren com a punt de partida que la teoria qu脿ntica 茅s correcta. Aquest escenari aconsegueix certificar el car脿cter qu脿ntic de certs dispositius, fins i tot en el sup貌sit que adversaris potencials tenen a la seva disposici贸 tot el poder que les lleis de la f铆sica permeten. El tema principal d'aquesta tesi 茅s la certificaci贸 de diversos recursos qu脿ntics de manera independent del dispositiu. En la primera part de la tesi ens centrem en l'autoavaluaci贸, un dels protocols independents del dispositiu m茅s senzills. El seu objectiu 茅s recuperar els estats qu脿ntics que s'usen, nom茅s a partir de les correlacions observades al mesurar. T茅 una import脿ncia fonamental en el paradigma independent del dispositiu ja que mostra quins estats qu脿ntics deixen una 'empremta'. En aquesta tesi presentem varis resultats referents a l'autoavaluaci贸. Primerament, demostrem que les desigualtats de Bell encadenades poden ser usades per auto-avaluar parelles de qubits m脿ximament entrella莽ats de manera robusta, aix铆 com estats de Dicke, estats de grafs i estats de dimensi贸 finita arbitr脿ria que admetin la descomposici贸 de Schmidt. Finalment, estenem l'autoavaluaci贸 a l'escenari semi-independent del dispositiu i n'explorem les seves propietats. En la segona part de la tesi anem a la certificaci贸 de varis recursos qu脿ntics i protocols. Mentre que l'escenari independent del dispositiu ofereix seguretat en grau m脿xim, t茅 algunes propietats que hom voldria evitar. 脡s dif铆cil d'implementar: En alguns casos es poden plantejar hip貌tesis m茅s fortes sobre el funcionament dels dispositius.En segon lloc, l'escenari es basa en l'observaci贸 de correlacions no locals, cosa que inutilitza certes classes d'estats entrella莽ats per a protocols independents del dispositiu. Abordem el primer repte presentant una quantificaci贸 de l'entrella莽ament i l'aleatorietat en xarxes qu脿ntiques en l'escenari de mesurament independent del dispositiu, on se suposa que totes les parts tenen els seus aparells de preparaci贸 caracteritzats. En aquest cas, es poden detectar tots els estats entrella莽ats. Quant al segon problema, combinem l'escenari de la mesurament independent del dispositiu amb l'autoavaluaci贸 i presentem el primer protocol per a una detecci贸 de tots els estats entrella莽ats de manera independent del dispositiu. El protocol implica la col路locaci贸 d'un estat entrella莽at per ser detectat en una xarxa qu脿ntica. Finalment, identifiquem la teleportaci贸 d'estats qu脿ntics com un representant dels protocols unilaterals de mesurament independent del dispositiu, el qual ens ajuda a proposar un nou punt de refer猫ncia per certificar la no-classicalitat de la teleportaci贸. Partint d'aquest punt de refer猫ncia, demostrem que tots els estats entrella莽ats indueixen un experiment de teleportaci贸 que no pot ser simulat de manera cl脿ssica.Award-winningPostprint (published version

    Device-independent certification of quantum resources

    Get PDF
    The last two decades have been a very fruitful period for the fundamental research related to quantum information theory. Today we have a fairly good understanding of how intrinsically quantum properties affect various computational and cryptographic tasks. Practical implementations are advancing as well. Devices performing quantum key distribution or quantum random number generation are already commercially available. As time goes more resources are being invested in building a device which would demonstrate and exploit quantum computational supremacy. In the context of the impending second quantum revolution it is of crucial importance to build new certification tools, improve the existing ones and understand their limits. When assessing the non-classicality of a given device it is essential to estimate which assumptions about the device are not jeopardizing the certification procedure. Device-independent scenario does not make any assumptions about the inner functioning of devices, but usually only assumes the correctness of quantum theory. It gained a lot of attention because it manages to certify the quantum character of certain devices while giving to potential adversaries all power allowed by the laws of physics. Device-independent certification of various quantum resources is the main subject of the thesis.In the first part of the thesis we focus on self-testing, one of the simplest device-independent protocols. It aims to recover quantum states solely from the observed measurement correlations. It has a fundamental importance for the device-independent paradigm because it shows which quantum states can leave a device-independent 'imprint'. Practically, it bears a significance as a possible first step in more complex protocols such as blind quantum computing, randomness generation or quantum key distribution. In this thesis we present several new self-testing results. Firstly, we provide a proof that chained Bell inequalities can be used to robustly self-test maximally entangled pair of qubits and an arbitrary number of real measurements. As a side result we also present a protocol for randomness generation based on the maximal violation of a chained Bell inequality. Secondly, we provide new self-testing protocols for several classes of multipartite quantum states: Dicke states, graph states and all states of arbitrary finite dimension admitting the Schmidt decomposition. Finally, we extend self-testing to the semi-device-independent scenario and explore its properties.In the second part we move to the certification of several quantum resources and protocols. While the device-independent scenario offers the utmost security, it has a few undesirable properties. Firstly, it is very difficult to implement. In some cases, depending on the scenario, stronger assumptions about the functioning of the devices can be made. Secondly, the scenario relies on the observation of nonlocal measurement correlations, which makes some classes of entangled states useless for device-independent protocols. We address the first difficulty by presenting quantification of entanglement and randomness in quantum networks in the measurement-device-independent scenario, in which parties are assumed to have characterized preparation devices. In this scenario all entangled states can be detected. To address the second issue, we merge measurement-device-independent entanglement detection with self-testing and present the first protocol for a completely device-independent detection of all entangled states. The protocol involves placing an entangled state to be detected in a quantum network. Finally, we identify quantum state teleportation as a representative of one-sided measurement-device-independent protocols, which helps us to propose a new benchmark for certifying the non-classicality of teleportation. By using this new benchmark we show that all entangled states can lead to a teleportation protocol that cannot be simulated classicallyLes dues darreres d猫cades han significat un per铆ode molt fruct铆fer per a la investigaci贸 b脿sica en relaci贸 a la teoria qu脿ntica de la informaci贸. Avui en dia tenim un grau de comprensi贸 raonable sobre l'efecte que les propietats qu脿ntiques tenen sobre diverses tasques computacionals i criptogr脿fiques. Paral路lelament, tamb茅 es produeixen aven莽os en les implementacions pr脿ctiques: Varis dispositius que realitzen distribuci贸 qu脿ntica de claus o generaci贸 qu脿ntica de nombres aleatoris s贸n ja una realitat i estan disponibles comercialment. Mentrestant, m茅s recursos s'estan invertint en construir un dispositiu que pugui provar i explotar l'anomenada superioritat qu脿ntica. En el context d'aquesta imminent segona revoluci贸 qu脿ntica, la import脿ncia de construir noves eines de certificaci贸 i millorar les existents 茅s crucial. En el proc茅s d'avaluar la no-classicalitat d'un dispositiu donat, 茅s essencial poder estimar quines hip貌tesis no comprometen el proc茅s de certificaci贸. L'escenari independent del dispositiu no fa cap hip貌tesi sobre el funcionament intern dels dispositius, tan sols pren com a punt de partida que la teoria qu脿ntica 茅s correcta. Aquest escenari aconsegueix certificar el car脿cter qu脿ntic de certs dispositius, fins i tot en el sup貌sit que adversaris potencials tenen a la seva disposici贸 tot el poder que les lleis de la f铆sica permeten. El tema principal d'aquesta tesi 茅s la certificaci贸 de diversos recursos qu脿ntics de manera independent del dispositiu. En la primera part de la tesi ens centrem en l'autoavaluaci贸, un dels protocols independents del dispositiu m茅s senzills. El seu objectiu 茅s recuperar els estats qu脿ntics que s'usen, nom茅s a partir de les correlacions observades al mesurar. T茅 una import脿ncia fonamental en el paradigma independent del dispositiu ja que mostra quins estats qu脿ntics deixen una 'empremta'. En aquesta tesi presentem varis resultats referents a l'autoavaluaci贸. Primerament, demostrem que les desigualtats de Bell encadenades poden ser usades per auto-avaluar parelles de qubits m脿ximament entrella莽ats de manera robusta, aix铆 com estats de Dicke, estats de grafs i estats de dimensi贸 finita arbitr脿ria que admetin la descomposici贸 de Schmidt. Finalment, estenem l'autoavaluaci贸 a l'escenari semi-independent del dispositiu i n'explorem les seves propietats. En la segona part de la tesi anem a la certificaci贸 de varis recursos qu脿ntics i protocols. Mentre que l'escenari independent del dispositiu ofereix seguretat en grau m脿xim, t茅 algunes propietats que hom voldria evitar. 脡s dif铆cil d'implementar: En alguns casos es poden plantejar hip貌tesis m茅s fortes sobre el funcionament dels dispositius.En segon lloc, l'escenari es basa en l'observaci贸 de correlacions no locals, cosa que inutilitza certes classes d'estats entrella莽ats per a protocols independents del dispositiu. Abordem el primer repte presentant una quantificaci贸 de l'entrella莽ament i l'aleatorietat en xarxes qu脿ntiques en l'escenari de mesurament independent del dispositiu, on se suposa que totes les parts tenen els seus aparells de preparaci贸 caracteritzats. En aquest cas, es poden detectar tots els estats entrella莽ats. Quant al segon problema, combinem l'escenari de la mesurament independent del dispositiu amb l'autoavaluaci贸 i presentem el primer protocol per a una detecci贸 de tots els estats entrella莽ats de manera independent del dispositiu. El protocol implica la col路locaci贸 d'un estat entrella莽at per ser detectat en una xarxa qu脿ntica. Finalment, identifiquem la teleportaci贸 d'estats qu脿ntics com un representant dels protocols unilaterals de mesurament independent del dispositiu, el qual ens ajuda a proposar un nou punt de refer猫ncia per certificar la no-classicalitat de la teleportaci贸. Partint d'aquest punt de refer猫ncia, demostrem que tots els estats entrella莽ats indueixen un experiment de teleportaci贸 que no pot ser simulat de manera cl脿ssica

    Network quantum steering

    Get PDF
    The development of large-scale quantum networks promises to bring a multitude of technological applications as well as shed light on foundational topics, such as quantum nonlocality. It is particularly interesting to consider scenarios where sources within the network are statistically independent, which leads to so-called network nonlocality, even when parties perform fixed measurements. Here we promote certain parties to be trusted and introduce the notion of network steering and network local hidden state (NLHS) models within this paradigm of independent sources. In one direction, we show how results from Bell nonlocality and quantum steering can be used to demonstrate network steering. We further show that it is a genuinely novel effect, by exhibiting unsteerable states that nevertheless demonstrate network steering, based upon entanglement swapping, yielding a form of activation. On the other hand, we provide no-go results for network steering in a large class of scenarios, by explicitly constructing NLHS models.Comment: 11 pages, 6 figure

    Experimental Certification of Quantum Transmission via Bell's Theorem

    Full text link
    Quantum transmission links are central elements in essentially all implementations of quantum information protocols. Emerging progress in quantum technologies involving such links needs to be accompanied by appropriate certification tools. In adversarial scenarios, a certification method can be vulnerable to attacks if too much trust is placed on the underlying system. Here, we propose a protocol in a device independent framework, which allows for the certification of practical quantum transmission links in scenarios where minimal assumptions are made about the functioning of the certification setup. In particular, we take unavoidable transmission losses into account by modeling the link as a completely-positive trace-decreasing map. We also, crucially, remove the assumption of independent and identically distributed samples, which is known to be incompatible with adversarial settings. Finally, in view of the use of the certified transmitted states for follow-up applications, our protocol moves beyond certification of the channel to allow us to estimate the quality of the transmitted state itself. To illustrate the practical relevance and the feasibility of our protocol with currently available technology we provide an experimental implementation based on a state-of-the-art polarization entangled photon pair source in a Sagnac configuration and analyze its robustness for realistic losses and errors.Comment: 34 pages, 14 figure

    Device-independent certification of quantum resources

    No full text
    The last two decades have been a very fruitful period for the fundamental research related to quantum information theory. Today we have a fairly good understanding of how intrinsically quantum properties affect various computational and cryptographic tasks. Practical implementations are advancing as well. Devices performing quantum key distribution or quantum random number generation are already commercially available. As time goes more resources are being invested in building a device which would demonstrate and exploit quantum computational supremacy. In the context of the impending second quantum revolution it is of crucial importance to build new certification tools, improve the existing ones and understand their limits. When assessing the non-classicality of a given device it is essential to estimate which assumptions about the device are not jeopardizing the certification procedure. Device-independent scenario does not make any assumptions about the inner functioning of devices, but usually only assumes the correctness of quantum theory. It gained a lot of attention because it manages to certify the quantum character of certain devices while giving to potential adversaries all power allowed by the laws of physics. Device-independent certification of various quantum resources is the main subject of the thesis.In the first part of the thesis we focus on self-testing, one of the simplest device-independent protocols. It aims to recover quantum states solely from the observed measurement correlations. It has a fundamental importance for the device-independent paradigm because it shows which quantum states can leave a device-independent 'imprint'. Practically, it bears a significance as a possible first step in more complex protocols such as blind quantum computing, randomness generation or quantum key distribution. In this thesis we present several new self-testing results. Firstly, we provide a proof that chained Bell inequalities can be used to robustly self-test maximally entangled pair of qubits and an arbitrary number of real measurements. As a side result we also present a protocol for randomness generation based on the maximal violation of a chained Bell inequality. Secondly, we provide new self-testing protocols for several classes of multipartite quantum states: Dicke states, graph states and all states of arbitrary finite dimension admitting the Schmidt decomposition. Finally, we extend self-testing to the semi-device-independent scenario and explore its properties.In the second part we move to the certification of several quantum resources and protocols. While the device-independent scenario offers the utmost security, it has a few undesirable properties. Firstly, it is very difficult to implement. In some cases, depending on the scenario, stronger assumptions about the functioning of the devices can be made. Secondly, the scenario relies on the observation of nonlocal measurement correlations, which makes some classes of entangled states useless for device-independent protocols. We address the first difficulty by presenting quantification of entanglement and randomness in quantum networks in the measurement-device-independent scenario, in which parties are assumed to have characterized preparation devices. In this scenario all entangled states can be detected. To address the second issue, we merge measurement-device-independent entanglement detection with self-testing and present the first protocol for a completely device-independent detection of all entangled states. The protocol involves placing an entangled state to be detected in a quantum network. Finally, we identify quantum state teleportation as a representative of one-sided measurement-device-independent protocols, which helps us to propose a new benchmark for certifying the non-classicality of teleportation. By using this new benchmark we show that all entangled states can lead to a teleportation protocol that cannot be simulated classicallyLes dues darreres d猫cades han significat un per铆ode molt fruct铆fer per a la investigaci贸 b脿sica en relaci贸 a la teoria qu脿ntica de la informaci贸. Avui en dia tenim un grau de comprensi贸 raonable sobre l'efecte que les propietats qu脿ntiques tenen sobre diverses tasques computacionals i criptogr脿fiques. Paral路lelament, tamb茅 es produeixen aven莽os en les implementacions pr脿ctiques: Varis dispositius que realitzen distribuci贸 qu脿ntica de claus o generaci贸 qu脿ntica de nombres aleatoris s贸n ja una realitat i estan disponibles comercialment. Mentrestant, m茅s recursos s'estan invertint en construir un dispositiu que pugui provar i explotar l'anomenada superioritat qu脿ntica. En el context d'aquesta imminent segona revoluci贸 qu脿ntica, la import脿ncia de construir noves eines de certificaci贸 i millorar les existents 茅s crucial. En el proc茅s d'avaluar la no-classicalitat d'un dispositiu donat, 茅s essencial poder estimar quines hip貌tesis no comprometen el proc茅s de certificaci贸. L'escenari independent del dispositiu no fa cap hip貌tesi sobre el funcionament intern dels dispositius, tan sols pren com a punt de partida que la teoria qu脿ntica 茅s correcta. Aquest escenari aconsegueix certificar el car脿cter qu脿ntic de certs dispositius, fins i tot en el sup貌sit que adversaris potencials tenen a la seva disposici贸 tot el poder que les lleis de la f铆sica permeten. El tema principal d'aquesta tesi 茅s la certificaci贸 de diversos recursos qu脿ntics de manera independent del dispositiu. En la primera part de la tesi ens centrem en l'autoavaluaci贸, un dels protocols independents del dispositiu m茅s senzills. El seu objectiu 茅s recuperar els estats qu脿ntics que s'usen, nom茅s a partir de les correlacions observades al mesurar. T茅 una import脿ncia fonamental en el paradigma independent del dispositiu ja que mostra quins estats qu脿ntics deixen una 'empremta'. En aquesta tesi presentem varis resultats referents a l'autoavaluaci贸. Primerament, demostrem que les desigualtats de Bell encadenades poden ser usades per auto-avaluar parelles de qubits m脿ximament entrella莽ats de manera robusta, aix铆 com estats de Dicke, estats de grafs i estats de dimensi贸 finita arbitr脿ria que admetin la descomposici贸 de Schmidt. Finalment, estenem l'autoavaluaci贸 a l'escenari semi-independent del dispositiu i n'explorem les seves propietats. En la segona part de la tesi anem a la certificaci贸 de varis recursos qu脿ntics i protocols. Mentre que l'escenari independent del dispositiu ofereix seguretat en grau m脿xim, t茅 algunes propietats que hom voldria evitar. 脡s dif铆cil d'implementar: En alguns casos es poden plantejar hip貌tesis m茅s fortes sobre el funcionament dels dispositius.En segon lloc, l'escenari es basa en l'observaci贸 de correlacions no locals, cosa que inutilitza certes classes d'estats entrella莽ats per a protocols independents del dispositiu. Abordem el primer repte presentant una quantificaci贸 de l'entrella莽ament i l'aleatorietat en xarxes qu脿ntiques en l'escenari de mesurament independent del dispositiu, on se suposa que totes les parts tenen els seus aparells de preparaci贸 caracteritzats. En aquest cas, es poden detectar tots els estats entrella莽ats. Quant al segon problema, combinem l'escenari de la mesurament independent del dispositiu amb l'autoavaluaci贸 i presentem el primer protocol per a una detecci贸 de tots els estats entrella莽ats de manera independent del dispositiu. El protocol implica la col路locaci贸 d'un estat entrella莽at per ser detectat en una xarxa qu脿ntica. Finalment, identifiquem la teleportaci贸 d'estats qu脿ntics com un representant dels protocols unilaterals de mesurament independent del dispositiu, el qual ens ajuda a proposar un nou punt de refer猫ncia per certificar la no-classicalitat de la teleportaci贸. Partint d'aquest punt de refer猫ncia, demostrem que tots els estats entrella莽ats indueixen un experiment de teleportaci贸 que no pot ser simulat de manera cl脿ssica

    Device-independent certification of quantum resources

    No full text
    The last two decades have been a very fruitful period for the fundamental research related to quantum information theory. Today we have a fairly good understanding of how intrinsically quantum properties affect various computational and cryptographic tasks. Practical implementations are advancing as well. Devices performing quantum key distribution or quantum random number generation are already commercially available. As time goes more resources are being invested in building a device which would demonstrate and exploit quantum computational supremacy. In the context of the impending second quantum revolution it is of crucial importance to build new certification tools, improve the existing ones and understand their limits. When assessing the non-classicality of a given device it is essential to estimate which assumptions about the device are not jeopardizing the certification procedure. Device-independent scenario does not make any assumptions about the inner functioning of devices, but usually only assumes the correctness of quantum theory. It gained a lot of attention because it manages to certify the quantum character of certain devices while giving to potential adversaries all power allowed by the laws of physics. Device-independent certification of various quantum resources is the main subject of the thesis.In the first part of the thesis we focus on self-testing, one of the simplest device-independent protocols. It aims to recover quantum states solely from the observed measurement correlations. It has a fundamental importance for the device-independent paradigm because it shows which quantum states can leave a device-independent 'imprint'. Practically, it bears a significance as a possible first step in more complex protocols such as blind quantum computing, randomness generation or quantum key distribution. In this thesis we present several new self-testing results. Firstly, we provide a proof that chained Bell inequalities can be used to robustly self-test maximally entangled pair of qubits and an arbitrary number of real measurements. As a side result we also present a protocol for randomness generation based on the maximal violation of a chained Bell inequality. Secondly, we provide new self-testing protocols for several classes of multipartite quantum states: Dicke states, graph states and all states of arbitrary finite dimension admitting the Schmidt decomposition. Finally, we extend self-testing to the semi-device-independent scenario and explore its properties.In the second part we move to the certification of several quantum resources and protocols. While the device-independent scenario offers the utmost security, it has a few undesirable properties. Firstly, it is very difficult to implement. In some cases, depending on the scenario, stronger assumptions about the functioning of the devices can be made. Secondly, the scenario relies on the observation of nonlocal measurement correlations, which makes some classes of entangled states useless for device-independent protocols. We address the first difficulty by presenting quantification of entanglement and randomness in quantum networks in the measurement-device-independent scenario, in which parties are assumed to have characterized preparation devices. In this scenario all entangled states can be detected. To address the second issue, we merge measurement-device-independent entanglement detection with self-testing and present the first protocol for a completely device-independent detection of all entangled states. The protocol involves placing an entangled state to be detected in a quantum network. Finally, we identify quantum state teleportation as a representative of one-sided measurement-device-independent protocols, which helps us to propose a new benchmark for certifying the non-classicality of teleportation. By using this new benchmark we show that all entangled states can lead to a teleportation protocol that cannot be simulated classicallyLes dues darreres d猫cades han significat un per铆ode molt fruct铆fer per a la investigaci贸 b脿sica en relaci贸 a la teoria qu脿ntica de la informaci贸. Avui en dia tenim un grau de comprensi贸 raonable sobre l'efecte que les propietats qu脿ntiques tenen sobre diverses tasques computacionals i criptogr脿fiques. Paral路lelament, tamb茅 es produeixen aven莽os en les implementacions pr脿ctiques: Varis dispositius que realitzen distribuci贸 qu脿ntica de claus o generaci贸 qu脿ntica de nombres aleatoris s贸n ja una realitat i estan disponibles comercialment. Mentrestant, m茅s recursos s'estan invertint en construir un dispositiu que pugui provar i explotar l'anomenada superioritat qu脿ntica. En el context d'aquesta imminent segona revoluci贸 qu脿ntica, la import脿ncia de construir noves eines de certificaci贸 i millorar les existents 茅s crucial. En el proc茅s d'avaluar la no-classicalitat d'un dispositiu donat, 茅s essencial poder estimar quines hip貌tesis no comprometen el proc茅s de certificaci贸. L'escenari independent del dispositiu no fa cap hip貌tesi sobre el funcionament intern dels dispositius, tan sols pren com a punt de partida que la teoria qu脿ntica 茅s correcta. Aquest escenari aconsegueix certificar el car脿cter qu脿ntic de certs dispositius, fins i tot en el sup貌sit que adversaris potencials tenen a la seva disposici贸 tot el poder que les lleis de la f铆sica permeten. El tema principal d'aquesta tesi 茅s la certificaci贸 de diversos recursos qu脿ntics de manera independent del dispositiu. En la primera part de la tesi ens centrem en l'autoavaluaci贸, un dels protocols independents del dispositiu m茅s senzills. El seu objectiu 茅s recuperar els estats qu脿ntics que s'usen, nom茅s a partir de les correlacions observades al mesurar. T茅 una import脿ncia fonamental en el paradigma independent del dispositiu ja que mostra quins estats qu脿ntics deixen una 'empremta'. En aquesta tesi presentem varis resultats referents a l'autoavaluaci贸. Primerament, demostrem que les desigualtats de Bell encadenades poden ser usades per auto-avaluar parelles de qubits m脿ximament entrella莽ats de manera robusta, aix铆 com estats de Dicke, estats de grafs i estats de dimensi贸 finita arbitr脿ria que admetin la descomposici贸 de Schmidt. Finalment, estenem l'autoavaluaci贸 a l'escenari semi-independent del dispositiu i n'explorem les seves propietats. En la segona part de la tesi anem a la certificaci贸 de varis recursos qu脿ntics i protocols. Mentre que l'escenari independent del dispositiu ofereix seguretat en grau m脿xim, t茅 algunes propietats que hom voldria evitar. 脡s dif铆cil d'implementar: En alguns casos es poden plantejar hip貌tesis m茅s fortes sobre el funcionament dels dispositius.En segon lloc, l'escenari es basa en l'observaci贸 de correlacions no locals, cosa que inutilitza certes classes d'estats entrella莽ats per a protocols independents del dispositiu. Abordem el primer repte presentant una quantificaci贸 de l'entrella莽ament i l'aleatorietat en xarxes qu脿ntiques en l'escenari de mesurament independent del dispositiu, on se suposa que totes les parts tenen els seus aparells de preparaci贸 caracteritzats. En aquest cas, es poden detectar tots els estats entrella莽ats. Quant al segon problema, combinem l'escenari de la mesurament independent del dispositiu amb l'autoavaluaci贸 i presentem el primer protocol per a una detecci贸 de tots els estats entrella莽ats de manera independent del dispositiu. El protocol implica la col路locaci贸 d'un estat entrella莽at per ser detectat en una xarxa qu脿ntica. Finalment, identifiquem la teleportaci贸 d'estats qu脿ntics com un representant dels protocols unilaterals de mesurament independent del dispositiu, el qual ens ajuda a proposar un nou punt de refer猫ncia per certificar la no-classicalitat de la teleportaci贸. Partint d'aquest punt de refer猫ncia, demostrem que tots els estats entrella莽ats indueixen un experiment de teleportaci贸 que no pot ser simulat de manera cl脿ssica

    La computaci贸 qu脿ntica mitjan莽ant interrogatori

    No full text
    Treball final de m脿ster oficial fet en col路laboraci贸 amb Universitat Aut貌noma de Barcelona (UAB), Universitat de Barcelona (UB) i Institut de Ci猫ncies Fot貌niques (ICFO)[ANGL脠S] Quantum information theory forms a bridge between the foundations of quantum mechanics and its promising practical potentials. The extensive theoretical research has been conducted during the last decades and the applications such as quantum key distribution and quantum computing promise to provide real technological breakthroughs. Many experimental groups worldwide are working on the practical implementation of the concepts from the quantum information theory. In the recent years a lot of attention has been paid to the certification of truly quantum behavior of some device, claimed to be quantum. This certification can be done by using some established interactive proof in which classical user just by commanding to a quantum device (prover) can make himself sure that the device works as advertised and moreover can actually use it for some particular task. When it comes to quantum computing one has to be sure that a machine uses quantum mechanics for the computational process. Two interesting interactive proofs are developed so far. One of them uses specific computation model, Measurement-based quantum computing, which is performed on a class of highly entangled states, graph states. The difficulty with the implementation of this interactive proof is a big number of provers required for the process. In this thesis we present some initial results of the attempts to construct interactive proof that would use smaller number of provers. Difficulties of the two-prover interactive proof and guidelines for the future research are presented as well as the new three-prover interactive proof for quantum device performing computation by doing single qubit unitary operations.[CASTELL脌] La teor铆a cu谩ntica de la informaci贸n establece un puente entre los fundamentos de la mec谩nica cu谩ntica y su impresionante potencial pr谩ctico. La extensa investigaci贸n te贸rica que ha tenido lugar en las 煤ltimas d茅cadas y aplicaciones como la distribuci贸n cu谩ntica de claves y la computaci贸n cu谩ntica prometen continuar en una revoluci贸n tecnol贸gica. Muchos grupos experimentales est谩n trabajando a lo largo y ancho del mundo en implementaciones pr谩cticas de conceptos de la teor铆a cu谩ntica de la informaci贸n. En los 煤ltimos a帽os se ha prestado mucha atenci贸n a la certificaci贸n del comportamiento cu谩ntico de diversos sistemas que se supon铆an cu谩nticos. Dicha certificaci贸n puede realizarse mediante el uso de protocolos bien establecidos de demostraciones interactivas en los que un usuario cl谩sico, s贸lo d谩ndole 贸rdenes a un sistema cu谩ntico (el demostrador) puede asegurarse de que el dispositivo en cuesti贸n funciona como es esperado y, m谩s a煤n, puede utilizarse para alguna tarea en particular. Cuando se trata de computaci贸n cu谩ntica, uno tiene que estar seguro de que la m谩quina realmente utiliza a la mec谩nica cu谩ntica para el proceso computacional. Hasta el momento, se han desarrollado dos interesantes modelos de demostraciones interactivas. Uno de ellos sirve para certificar que se est谩 realizando computaci贸n cu谩ntica basada en la medici贸n sobre un sistema. La dificultad con la implementaci贸n de este esquema de demostraci贸n interactiva es que requiere de un gran n煤mero de demostradores. En esta tesis presentamos resultados iniciales sobre el intento de construir modelos de demostraci贸n interactiva que requieran una menor cantidad de demostrados. Presentamos algunas limitaciones del modelo de demostraci贸n interactiva de dos demostradores, y mostramos un avance sobre futuras investigaciones junto con el nuevo modelo de demostraci贸n interactiva de tres partes para dispositivos que realizan computaci贸n cu谩ntica mediante operaciones unitarias de un s贸lo qubit.[CATAL脌] La teoria de la informaci贸 qu脿ntica es troba entre els fonaments de la mec脿nica qu脿ntica i les seves notables implementacions pr脿ctiques. En les 煤ltimes d猫cades s'ha realitzat una gran investigaci贸 te貌rica en aquest camp, donant lloc a aplicacions tal com la distribuci贸 qu脿ntica de claus i la computaci贸 qu脿ntica, que prometen una revoluci贸 tecnol貌gica. Molts grups experimentals internacionals treballen en la implementaci贸 dels conceptes de la teoria de la de la informaci贸 qu脿ntica. En els 煤ltims anys s'ha prestat molta atenci贸 a la certificaci贸 genu茂na dels dispositius qu脿ntics. Aquesta certificaci贸 pot ser duta a terme utilitzant una prova interactiva entre un usuari cl脿ssic i un dispositiu qu脿ntic, de forma que l'usuari pot certificar que el dispositiu t茅 un comportament qu脿ntic i, a m茅s, pot utilitzar-lo per a una tasca espec铆fica. En el cas de la computaci贸 qu脿ntica un ha d'assegurar-se que la m脿quina utilitza la mec脿nica qu脿ntica per al proc茅s de computaci贸. Fins ara, s'han desenvolupat dos sistemes de demostraci贸 interactiva. Un d'ells certifica Measurement-based Quantum Computing amb un estat gr脿fic: un m猫tode de la computaci贸 qu脿ntica en qu猫 es troba el resultat de la computaci贸 mitjan莽ant unes determinades mesures en un estat qu脿ntic entrella莽at. La dificultat de la seva implementaci贸 es troba en l'alta quantitat de sistemes qu脿ntics necessaris (anomenats "provers") per realitzar el proc茅s. En aquesta tesi es presenten uns nous resultats en l'intent de construir sistemes de demostraci贸 interactiu amb menys provers. Tamb茅 es presenten les dificultats associades amb sistemes de dos provers, indicacions per a futures investigacions, i un nou sistema amb tres provers en el qual es certifica la realitzaci贸 d'una operaci贸 unit脿ria d'un qubit

    La computaci贸 qu脿ntica mitjan莽ant interrogatori

    No full text
    Treball final de m脿ster oficial fet en col路laboraci贸 amb Universitat Aut貌noma de Barcelona (UAB), Universitat de Barcelona (UB) i Institut de Ci猫ncies Fot貌niques (ICFO)[ANGL脠S] Quantum information theory forms a bridge between the foundations of quantum mechanics and its promising practical potentials. The extensive theoretical research has been conducted during the last decades and the applications such as quantum key distribution and quantum computing promise to provide real technological breakthroughs. Many experimental groups worldwide are working on the practical implementation of the concepts from the quantum information theory. In the recent years a lot of attention has been paid to the certification of truly quantum behavior of some device, claimed to be quantum. This certification can be done by using some established interactive proof in which classical user just by commanding to a quantum device (prover) can make himself sure that the device works as advertised and moreover can actually use it for some particular task. When it comes to quantum computing one has to be sure that a machine uses quantum mechanics for the computational process. Two interesting interactive proofs are developed so far. One of them uses specific computation model, Measurement-based quantum computing, which is performed on a class of highly entangled states, graph states. The difficulty with the implementation of this interactive proof is a big number of provers required for the process. In this thesis we present some initial results of the attempts to construct interactive proof that would use smaller number of provers. Difficulties of the two-prover interactive proof and guidelines for the future research are presented as well as the new three-prover interactive proof for quantum device performing computation by doing single qubit unitary operations.[CASTELL脌] La teor铆a cu谩ntica de la informaci贸n establece un puente entre los fundamentos de la mec谩nica cu谩ntica y su impresionante potencial pr谩ctico. La extensa investigaci贸n te贸rica que ha tenido lugar en las 煤ltimas d茅cadas y aplicaciones como la distribuci贸n cu谩ntica de claves y la computaci贸n cu谩ntica prometen continuar en una revoluci贸n tecnol贸gica. Muchos grupos experimentales est谩n trabajando a lo largo y ancho del mundo en implementaciones pr谩cticas de conceptos de la teor铆a cu谩ntica de la informaci贸n. En los 煤ltimos a帽os se ha prestado mucha atenci贸n a la certificaci贸n del comportamiento cu谩ntico de diversos sistemas que se supon铆an cu谩nticos. Dicha certificaci贸n puede realizarse mediante el uso de protocolos bien establecidos de demostraciones interactivas en los que un usuario cl谩sico, s贸lo d谩ndole 贸rdenes a un sistema cu谩ntico (el demostrador) puede asegurarse de que el dispositivo en cuesti贸n funciona como es esperado y, m谩s a煤n, puede utilizarse para alguna tarea en particular. Cuando se trata de computaci贸n cu谩ntica, uno tiene que estar seguro de que la m谩quina realmente utiliza a la mec谩nica cu谩ntica para el proceso computacional. Hasta el momento, se han desarrollado dos interesantes modelos de demostraciones interactivas. Uno de ellos sirve para certificar que se est谩 realizando computaci贸n cu谩ntica basada en la medici贸n sobre un sistema. La dificultad con la implementaci贸n de este esquema de demostraci贸n interactiva es que requiere de un gran n煤mero de demostradores. En esta tesis presentamos resultados iniciales sobre el intento de construir modelos de demostraci贸n interactiva que requieran una menor cantidad de demostrados. Presentamos algunas limitaciones del modelo de demostraci贸n interactiva de dos demostradores, y mostramos un avance sobre futuras investigaciones junto con el nuevo modelo de demostraci贸n interactiva de tres partes para dispositivos que realizan computaci贸n cu谩ntica mediante operaciones unitarias de un s贸lo qubit.[CATAL脌] La teoria de la informaci贸 qu脿ntica es troba entre els fonaments de la mec脿nica qu脿ntica i les seves notables implementacions pr脿ctiques. En les 煤ltimes d猫cades s'ha realitzat una gran investigaci贸 te貌rica en aquest camp, donant lloc a aplicacions tal com la distribuci贸 qu脿ntica de claus i la computaci贸 qu脿ntica, que prometen una revoluci贸 tecnol貌gica. Molts grups experimentals internacionals treballen en la implementaci贸 dels conceptes de la teoria de la de la informaci贸 qu脿ntica. En els 煤ltims anys s'ha prestat molta atenci贸 a la certificaci贸 genu茂na dels dispositius qu脿ntics. Aquesta certificaci贸 pot ser duta a terme utilitzant una prova interactiva entre un usuari cl脿ssic i un dispositiu qu脿ntic, de forma que l'usuari pot certificar que el dispositiu t茅 un comportament qu脿ntic i, a m茅s, pot utilitzar-lo per a una tasca espec铆fica. En el cas de la computaci贸 qu脿ntica un ha d'assegurar-se que la m脿quina utilitza la mec脿nica qu脿ntica per al proc茅s de computaci贸. Fins ara, s'han desenvolupat dos sistemes de demostraci贸 interactiva. Un d'ells certifica Measurement-based Quantum Computing amb un estat gr脿fic: un m猫tode de la computaci贸 qu脿ntica en qu猫 es troba el resultat de la computaci贸 mitjan莽ant unes determinades mesures en un estat qu脿ntic entrella莽at. La dificultat de la seva implementaci贸 es troba en l'alta quantitat de sistemes qu脿ntics necessaris (anomenats "provers") per realitzar el proc茅s. En aquesta tesi es presenten uns nous resultats en l'intent de construir sistemes de demostraci贸 interactiu amb menys provers. Tamb茅 es presenten les dificultats associades amb sistemes de dos provers, indicacions per a futures investigacions, i un nou sistema amb tres provers en el qual es certifica la realitzaci贸 d'una operaci贸 unit脿ria d'un qubit

    La computaci贸 qu脿ntica mitjan莽ant interrogatori

    No full text
    Treball final de m脿ster oficial fet en col路laboraci贸 amb Universitat Aut貌noma de Barcelona (UAB), Universitat de Barcelona (UB) i Institut de Ci猫ncies Fot貌niques (ICFO)[ANGL脠S] Quantum information theory forms a bridge between the foundations of quantum mechanics and its promising practical potentials. The extensive theoretical research has been conducted during the last decades and the applications such as quantum key distribution and quantum computing promise to provide real technological breakthroughs. Many experimental groups worldwide are working on the practical implementation of the concepts from the quantum information theory. In the recent years a lot of attention has been paid to the certification of truly quantum behavior of some device, claimed to be quantum. This certification can be done by using some established interactive proof in which classical user just by commanding to a quantum device (prover) can make himself sure that the device works as advertised and moreover can actually use it for some particular task. When it comes to quantum computing one has to be sure that a machine uses quantum mechanics for the computational process. Two interesting interactive proofs are developed so far. One of them uses specific computation model, Measurement-based quantum computing, which is performed on a class of highly entangled states, graph states. The difficulty with the implementation of this interactive proof is a big number of provers required for the process. In this thesis we present some initial results of the attempts to construct interactive proof that would use smaller number of provers. Difficulties of the two-prover interactive proof and guidelines for the future research are presented as well as the new three-prover interactive proof for quantum device performing computation by doing single qubit unitary operations.[CASTELL脌] La teor铆a cu谩ntica de la informaci贸n establece un puente entre los fundamentos de la mec谩nica cu谩ntica y su impresionante potencial pr谩ctico. La extensa investigaci贸n te贸rica que ha tenido lugar en las 煤ltimas d茅cadas y aplicaciones como la distribuci贸n cu谩ntica de claves y la computaci贸n cu谩ntica prometen continuar en una revoluci贸n tecnol贸gica. Muchos grupos experimentales est谩n trabajando a lo largo y ancho del mundo en implementaciones pr谩cticas de conceptos de la teor铆a cu谩ntica de la informaci贸n. En los 煤ltimos a帽os se ha prestado mucha atenci贸n a la certificaci贸n del comportamiento cu谩ntico de diversos sistemas que se supon铆an cu谩nticos. Dicha certificaci贸n puede realizarse mediante el uso de protocolos bien establecidos de demostraciones interactivas en los que un usuario cl谩sico, s贸lo d谩ndole 贸rdenes a un sistema cu谩ntico (el demostrador) puede asegurarse de que el dispositivo en cuesti贸n funciona como es esperado y, m谩s a煤n, puede utilizarse para alguna tarea en particular. Cuando se trata de computaci贸n cu谩ntica, uno tiene que estar seguro de que la m谩quina realmente utiliza a la mec谩nica cu谩ntica para el proceso computacional. Hasta el momento, se han desarrollado dos interesantes modelos de demostraciones interactivas. Uno de ellos sirve para certificar que se est谩 realizando computaci贸n cu谩ntica basada en la medici贸n sobre un sistema. La dificultad con la implementaci贸n de este esquema de demostraci贸n interactiva es que requiere de un gran n煤mero de demostradores. En esta tesis presentamos resultados iniciales sobre el intento de construir modelos de demostraci贸n interactiva que requieran una menor cantidad de demostrados. Presentamos algunas limitaciones del modelo de demostraci贸n interactiva de dos demostradores, y mostramos un avance sobre futuras investigaciones junto con el nuevo modelo de demostraci贸n interactiva de tres partes para dispositivos que realizan computaci贸n cu谩ntica mediante operaciones unitarias de un s贸lo qubit.[CATAL脌] La teoria de la informaci贸 qu脿ntica es troba entre els fonaments de la mec脿nica qu脿ntica i les seves notables implementacions pr脿ctiques. En les 煤ltimes d猫cades s'ha realitzat una gran investigaci贸 te貌rica en aquest camp, donant lloc a aplicacions tal com la distribuci贸 qu脿ntica de claus i la computaci贸 qu脿ntica, que prometen una revoluci贸 tecnol貌gica. Molts grups experimentals internacionals treballen en la implementaci贸 dels conceptes de la teoria de la de la informaci贸 qu脿ntica. En els 煤ltims anys s'ha prestat molta atenci贸 a la certificaci贸 genu茂na dels dispositius qu脿ntics. Aquesta certificaci贸 pot ser duta a terme utilitzant una prova interactiva entre un usuari cl脿ssic i un dispositiu qu脿ntic, de forma que l'usuari pot certificar que el dispositiu t茅 un comportament qu脿ntic i, a m茅s, pot utilitzar-lo per a una tasca espec铆fica. En el cas de la computaci贸 qu脿ntica un ha d'assegurar-se que la m脿quina utilitza la mec脿nica qu脿ntica per al proc茅s de computaci贸. Fins ara, s'han desenvolupat dos sistemes de demostraci贸 interactiva. Un d'ells certifica Measurement-based Quantum Computing amb un estat gr脿fic: un m猫tode de la computaci贸 qu脿ntica en qu猫 es troba el resultat de la computaci贸 mitjan莽ant unes determinades mesures en un estat qu脿ntic entrella莽at. La dificultat de la seva implementaci贸 es troba en l'alta quantitat de sistemes qu脿ntics necessaris (anomenats "provers") per realitzar el proc茅s. En aquesta tesi es presenten uns nous resultats en l'intent de construir sistemes de demostraci贸 interactiu amb menys provers. Tamb茅 es presenten les dificultats associades amb sistemes de dos provers, indicacions per a futures investigacions, i un nou sistema amb tres provers en el qual es certifica la realitzaci贸 d'una operaci贸 unit脿ria d'un qubit
    corecore